Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(4): 683-698.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38151019

RESUMO

Mycobacterial bioenergetics is a validated target space for antitubercular drug development. Here, we identify BB2-50F, a 6-substituted 5-(N,N-hexamethylene)amiloride derivative as a potent, multi-targeting bioenergetic inhibitor of Mycobacterium tuberculosis. We show that BB2-50F rapidly sterilizes both replicating and non-replicating cultures of M. tuberculosis and synergizes with several tuberculosis drugs. Target identification experiments, supported by docking studies, showed that BB2-50F targets the membrane-embedded c-ring of the F1Fo-ATP synthase and the catalytic subunit (substrate-binding site) of succinate dehydrogenase. Biochemical assays and metabolomic profiling showed that BB2-50F inhibits succinate oxidation, decreases the activity of the tricarboxylic acid (TCA) cycle, and results in succinate secretion from M. tuberculosis. Moreover, we show that the lethality of BB2-50F under aerobic conditions involves the accumulation of reactive oxygen species. Overall, this study identifies BB2-50F as an effective inhibitor of M. tuberculosis and highlights that targeting multiple components of the mycobacterial respiratory chain can produce fast-acting antimicrobials.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Succinato Desidrogenase/metabolismo , Succinato Desidrogenase/farmacologia , Antituberculosos/química , Tuberculose/tratamento farmacológico , Trifosfato de Adenosina , Inibidores Enzimáticos/farmacologia , Succinatos
2.
Cell Rep ; 42(5): 112444, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37115669

RESUMO

The bioenergetic mechanisms by which Mycobacterium tuberculosis survives hypoxia are poorly understood. Current models assume that the bacterium shifts to an alternate electron acceptor or fermentation to maintain membrane potential and ATP synthesis. Counterintuitively, we find here that oxygen itself is the principal terminal electron acceptor during hypoxic dormancy. M. tuberculosis can metabolize oxygen efficiently at least two orders of magnitude below the concentration predicted to occur in hypoxic lung granulomas. Despite a difference in apparent affinity for oxygen, both the cytochrome bcc:aa3 and cytochrome bd oxidase respiratory branches are required for hypoxic respiration. Simultaneous inhibition of both oxidases blocks oxygen consumption, reduces ATP levels, and kills M. tuberculosis under hypoxia. The capacity of mycobacteria to scavenge trace levels of oxygen, coupled with the absence of complex regulatory mechanisms to achieve hierarchal control of the terminal oxidases, may be a key determinant of long-term M. tuberculosis survival in hypoxic lung granulomas.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Oxigênio/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxirredutases/metabolismo , Homeostase , Tuberculose/microbiologia , Hipóxia , Trifosfato de Adenosina/metabolismo , Citocromos/metabolismo
3.
RSC Med Chem ; 13(12): 1605-1613, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36545436

RESUMO

Due to its central role in energy generation and bacterial viability, mycobacterial bioenergetics is an attractive therapeutic target for anti-tuberculosis drug discovery. Building upon our work on antimycobacterial dioxonaphthoimidazoliums that were activated by a proximal positive charge and generated reactive oxygen species upon reduction by Type II NADH dehydrogenase, we herein studied the effect of a distal positive charge on the antimycobacterial activity of naphthoquinoneimidazoles by incorporating a trialkylphosphonium cation. The potency-enhancing properties of the linker length were affirmed by structure-activity relationship studies. The most active compound against M. tb H37Rv displayed good selectivity index (SI = 34) and strong bactericidal activity in the low micromolar range, which occurred through rapid bacterial membrane depolarization that resulted in depletion of intracellular ATP. Through this work, we demonstrated a switch of the scaffold's mode-of-action via relocation of positive charge while retaining its excellent antibacterial activity and selectivity.

4.
ACS Infect Dis ; 8(12): 2413-2429, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36413173

RESUMO

With the post-antibiotic era rapidly approaching, many have turned their attention to developing new treatments, often by structural modification of existing antibiotics. Polymyxins, a family of lipopeptide antibiotics that are used as a last line of defense in the clinic, have recently developed resistance and exhibit significant nephrotoxicity issues. Using thiol-ene chemistry, the facile preparation of six unique S-lipidated building blocks was demonstrated and used to generate lipopeptide mimetics upon incorporation into solid-phase peptide synthesis (SPPS). We then designed and synthesized 38 polymyxin analogues, incorporating these unique building blocks at the N-terminus, or to replace hydrophobic residues at positions 6 and 7 of the native lipopeptides. Several polymyxin analogues bearing one or more S-linked lipids were found to be equipotent to polymyxin, showed minimal kidney nephrotoxicity, and demonstrated activity against several World Health Organisation (WHO) priority pathogens. The S-lipidation strategy has demonstrated potential as a novel approach to prepare innovative new lipopeptide antibiotics.


Assuntos
Antibacterianos , Polimixina B , Antibacterianos/farmacologia
5.
ACS Med Chem Lett ; 13(10): 1663-1669, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36262396

RESUMO

A revised total synthesis of aurachin D (1a), an isoprenoid quinolone alkaloid that targets Mycobacterium tuberculosis (Mtb) cytochrome bd (cyt-bd) oxidase, was accomplished using an oxazoline ring-opening reaction. The ring opening enabled access to a range of electron-poor analogues, while electron-rich analogues could be prepared using the Conrad-Limpach reaction. The aryl-substituted and side-chain-modified aurachin D analogues were screened for inhibition of Mtb cyt-bd oxidase and growth inhibition of Mtb. Nanomolar inhibition of Mtb cyt-bd oxidase was observed for the shorter-chain analogue 1d (citronellyl side chain) and the aryl-substituted analogues 1g/1k (fluoro substituent at C6/C7), 1t/1v (hydroxy substituent at C5/C6) and 1u/1w/1x (methoxy substituent at C5/C6/C7). Aurachin D and the analogues did not inhibit growth of nonpathogenic Mycobacterium smegmatis, but the citronellyl (1d) and 6-fluoro-substituted (1g) inhibitors from the Mtb cyt-bd oxidase assay displayed moderate growth inhibition against pathogenic Mtb (MIC = 4-8 µM).

6.
Elife ; 112022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486093

RESUMO

Transport of proteins across and into membranes is a fundamental biological process with the vast majority being conducted by the ubiquitous Sec machinery. In bacteria, this is usually achieved when the SecY-complex engages the cytosolic ATPase SecA (secretion) or translating ribosomes (insertion). Great strides have been made towards understanding the mechanism of protein translocation. Yet, important questions remain - notably, the nature of the individual steps that constitute transport, and how the proton-motive force (PMF) across the plasma membrane contributes. Here, we apply a recently developed high-resolution protein transport assay to explore these questions. We find that pre-protein transport is limited primarily by the diffusion of arginine residues across the membrane, particularly in the context of bulky hydrophobic sequences. This specific effect of arginine, caused by its positive charge, is mitigated for lysine which can be deprotonated and transported across the membrane in its neutral form. These observations have interesting implications for the mechanism of protein secretion, suggesting a simple mechanism through which the PMF can aid transport by enabling a 'proton ratchet', wherein re-protonation of exiting lysine residues prevents channel re-entry, biasing transport in the outward direction.


Assuntos
Proteínas de Escherichia coli , Arginina/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lisina/metabolismo , Transporte Proteico , Canais de Translocação SEC/metabolismo
7.
J Biol Chem ; 298(5): 101859, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35337802

RESUMO

Oxidation of malate to oxaloacetate, catalyzed by either malate dehydrogenase (Mdh) or malate quinone oxidoreductase (Mqo), is a critical step of the tricarboxylic acid cycle. Both Mqo and Mdh are found in most bacterial genomes, but the level of functional redundancy between these enzymes remains unclear. A bioinformatic survey revealed that Mqo was not as widespread as Mdh in bacteria but that it was highly conserved in mycobacteria. We therefore used mycobacteria as a model genera to study the functional role(s) of Mqo and its redundancy with Mdh. We deleted mqo from the environmental saprophyte Mycobacterium smegmatis, which lacks Mdh, and found that Mqo was essential for growth on nonfermentable carbon sources. On fermentable carbon sources, the Δmqo mutant exhibited delayed growth and lowered oxygen consumption and secreted malate and fumarate as terminal end products. Furthermore, heterologous expression of Mdh from the pathogenic species Mycobacterium tuberculosis shortened the delayed growth on fermentable carbon sources and restored growth on nonfermentable carbon sources at a reduced growth rate. In M. tuberculosis, CRISPR interference of either mdh or mqo expression resulted in a slower growth rate compared to controls, which was further inhibited when both genes were knocked down simultaneously. These data reveal that exergonic Mqo activity powers mycobacterial growth under nonenergy limiting conditions and that endergonic Mdh activity complements Mqo activity, but at an energetic cost for mycobacterial growth. We propose Mdh is maintained in slow-growing mycobacterial pathogens for use under conditions such as hypoxia that require reductive tricarboxylic acid cycle activity.


Assuntos
Malato Desidrogenase , Malatos , Oxirredutases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Ácido Cítrico , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Malatos/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Ácido Oxaloacético/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo
8.
Commun Biol ; 5(1): 166, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210534

RESUMO

Increasing antimicrobial resistance compels the search for next-generation inhibitors with differing or multiple molecular targets. In this regard, energy conservation in Mycobacterium tuberculosis has been clinically validated as a promising new drug target for combatting drug-resistant strains of M. tuberculosis. Here, we show that HM2-16F, a 6-substituted derivative of the FDA-approved drug amiloride, is an anti-tubercular inhibitor with bactericidal properties comparable to the FDA-approved drug bedaquiline (BDQ; Sirturo®) and inhibits the growth of bedaquiline-resistant mutants. We show that HM2-16F weakly inhibits the F1Fo-ATP synthase, depletes ATP, and affects the entry of acetyl-CoA into the Krebs cycle. HM2-16F synergizes with the cytochrome bcc-aa3 oxidase inhibitor Q203 (Telacebec) and co-administration with Q203 sterilizes in vitro cultures in 14 days. Synergy with Q203 occurs via direct inhibition of the cytochrome bd oxidase by HM2-16F. This study shows that amiloride derivatives represent a promising discovery platform for targeting energy generation in drug-resistant tuberculosis.


Assuntos
Mycobacterium tuberculosis , Trifosfato de Adenosina , Amilorida/farmacologia , Antituberculosos/farmacologia , Citocromos , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxirredutases
9.
Cell Rep ; 37(10): 110087, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879270

RESUMO

The conventional viewpoint of single-celled microbial metabolism fails to adequately depict energy flow at the systems level in host-adapted microbial communities. Emerging paradigms instead support that distinct microbiomes develop interconnected and interdependent electron transport chains that rely on cooperative production and sharing of bioenergetic machinery (i.e., directly involved in generating ATP) in the extracellular space. These communal resources represent an important subset of the microbial metabolome, designated here as the "pantryome" (i.e., pantry or external storage compartment), that critically supports microbiome function and can exert multifunctional effects on host physiology. We review these interactions as they relate to human health by detailing the genomic-based sharing potential of gut-derived bacterial and archaeal reference strains. Aromatic amino acids, metabolic cofactors (B vitamins), menaquinones (vitamin K2), hemes, and short-chain fatty acids (with specific emphasis on acetate as a central regulator of symbiosis) are discussed in depth regarding their role in microbiome-related metabolic diseases.


Assuntos
Bactérias/metabolismo , Metabolismo Energético , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Doenças Metabólicas/microbiologia , Animais , Bactérias/crescimento & desenvolvimento , Doença Crônica , Disbiose , Interações Hospedeiro-Patógeno , Humanos , Doenças Metabólicas/metabolismo , Simbiose
10.
J Med Chem ; 64(21): 15991-16007, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34706190

RESUMO

Disruption of redox homeostasis in mycobacteria causes irreversible stress induction and cell death. Here, we report the dioxonaphthoimidazolium scaffold as a novel redox cycling antituberculosis chemotype with potent bactericidal activity against growing and nutrient-starved phenotypically drug-resistant nongrowing bacteria. Maximal potency was dependent on the activation of the redox cycling quinone by the positively charged scaffold and accessibility to the mycobacterial cell membrane as directed by the lipophilicity and conformational characteristics of the N-substituted side chains. Evidence from microbiological, biochemical, and genetic investigations implicates a redox-driven mode of action that is reliant on the reduction of the quinone by type II NADH dehydrogenase (NDH2) for the generation of bactericidal levels of the reactive oxygen species (ROS). The bactericidal profile of a potent water-soluble analogue 32 revealed good activity against nutrient-starved organisms in the Loebel model of dormancy, low spontaneous resistance mutation frequency, and synergy with isoniazid in the checkerboard assay.


Assuntos
Antituberculosos/farmacologia , Imidazóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Antituberculosos/química , Antituberculosos/farmacocinética , Proteínas de Bactérias/metabolismo , Parede Celular/efeitos dos fármacos , Genes Reporter , Imidazóis/química , Imidazóis/farmacocinética , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/metabolismo , NADH Desidrogenase/metabolismo , Oxirredução , Ratos , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Regulação para Cima
11.
Nat Commun ; 12(1): 5236, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475399

RESUMO

New drugs are urgently needed to combat the global TB epidemic. Targeting simultaneously multiple respiratory enzyme complexes of Mycobacterium tuberculosis is regarded as one of the most effective treatment options to shorten drug administration regimes, and reduce the opportunity for the emergence of drug resistance. During infection and proliferation, the cytochrome bd oxidase plays a crucial role for mycobacterial pathophysiology by maintaining aerobic respiration at limited oxygen concentrations. Here, we present the cryo-EM structure of the cytochrome bd oxidase from M. tuberculosis at 2.5 Å. In conjunction with atomistic molecular dynamics (MD) simulation studies we discovered a previously unknown MK-9-binding site, as well as a unique disulfide bond within the Q-loop domain that defines an inactive conformation of the canonical quinol oxidation site in Actinobacteria. Our detailed insights into the long-sought atomic framework of the cytochrome bd oxidase from M. tuberculosis will form the basis for the design of highly specific drugs to act on this enzyme.


Assuntos
Grupo dos Citocromos b/química , Grupo dos Citocromos d/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Mycobacterium tuberculosis/enzimologia , Proteínas de Bactérias/química , Sítios de Ligação , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Oxirredutases/química , Conformação Proteica , Subunidades Proteicas , Vitamina K 2/análogos & derivados , Vitamina K 2/química
12.
Front Microbiol ; 12: 651744, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841379

RESUMO

Members of the genus Methylacidiphilum, a clade of metabolically flexible thermoacidophilic methanotrophs from the phylum Verrucomicrobia, can utilize a variety of substrates including methane, methanol, and hydrogen for growth. However, despite sequentially oxidizing methane to carbon dioxide via methanol and formate intermediates, growth on formate as the only source of reducing equivalents (i.e., NADH) has not yet been demonstrated. In many acidophiles, the inability to grow on organic acids has presumed that diffusion of the protonated form (e.g., formic acid) into the cell is accompanied by deprotonation prompting cytosolic acidification, which leads to the denaturation of vital proteins and the collapse of the proton motive force. In this work, we used a combination of biochemical, physiological, chemostat, and transcriptomic approaches to demonstrate that Methylacidiphilum sp. RTK17.1 can utilize formate as a substrate when cells are able to maintain pH homeostasis. Our findings show that Methylacidiphilum sp. RTK17.1 grows optimally with a circumneutral intracellular pH (pH 6.52 ± 0.04) across an extracellular range of pH 1.5-3.0. In batch experiments, formic acid addition resulted in no observable cell growth and cell death due to acidification of the cytosol. Nevertheless, stable growth on formic acid as the only source of energy was demonstrated in continuous chemostat cultures (D = 0.0052 h-1, td = 133 h). During growth on formic acid, biomass yields remained nearly identical to methanol-grown chemostat cultures when normalized per mole electron equivalent. Transcriptome analysis revealed the key genes associated with stress response: methane, methanol, and formate metabolism were differentially expressed in response to growth on formic acid. Collectively, these results show formic acid represents a utilizable source of energy/carbon to the acidophilic methanotrophs within geothermal environments. Findings expand the known metabolic flexibility of verrucomicrobial methanotrophs to include organic acids and provide insight into potential survival strategies used by these species during methane starvation.

13.
EMBO Mol Med ; 13(1): e13207, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33283973

RESUMO

The approval of bedaquiline has placed energy metabolism in the limelight as an attractive target space for tuberculosis antibiotic development. While bedaquiline inhibits the mycobacterial F1 F0 ATP synthase, small molecules targeting other components of the oxidative phosphorylation pathway have been identified. Of particular interest is Telacebec (Q203), a phase 2 drug candidate inhibitor of the cytochrome bcc:aa3 terminal oxidase. A functional redundancy between the cytochrome bcc:aa3 and the cytochrome bd oxidase protects M. tuberculosis from Q203-induced death, highlighting the attractiveness of the bd-type terminal oxidase for drug development. Here, we employed a facile whole-cell screen approach to identify the cytochrome bd inhibitor ND-011992. Although ND-011992 is ineffective on its own, it inhibits respiration and ATP homeostasis in combination with Q203. The drug combination was bactericidal against replicating and antibiotic-tolerant, non-replicating mycobacteria, and increased efficacy relative to that of a single drug in a mouse model. These findings suggest that a cytochrome bd oxidase inhibitor will add value to a drug combination targeting oxidative phosphorylation for tuberculosis treatment.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antibacterianos , Antituberculosos/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Camundongos , Oxirredutases , Tuberculose/tratamento farmacológico
14.
Eur J Med Chem ; 201: 112420, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32526553

RESUMO

Targeting energy metabolism in Mycobacterium tuberculosis (Mtb) is a new paradigm in the search for innovative anti-TB drugs. NADH:menaquinone oxidoreductase is a non-proton translocating type II NADH dehydrogenase (NDH-2) that is an essential enzyme in the respiratory chain of Mtb and is not found in mammalian mitochondria. Phenothiazines (PTZs) represent one of the most known class of NDH-2 inhibitors, but their use as anti-TB drugs is currently limited by the wide range of potentially serious off-target effects. In this work, we designed and synthesized a series of new PTZs by decorating the scaffold in an unconventional way, introducing various halogen atoms. By replacing the sulfur atom with selenium, a dibromophenoselenazine 20 was also synthesized. Among the synthesized poly-halogenated PTZs (HPTZs), dibromo and tetrachloro derivatives 9 and 11, along with the phenoselenazine 20, emerged with a better anti-TB profile than the therapeutic thioridazine (TZ). They targeted non-replicating Mtb, were bactericidal, and synergized with rifampin and bedaquiline. Moreover, their anti-TB activity was found to be related to the NDH-2 inhibition. Most important, they showed a markedly reduced affinity to dopaminergic and serotonergic receptors respect to the TZ. From this work emerged, for the first time, as the poly-halogenation of the PTZ core, while permitting to maintain good anti-TB profile could conceivably lead to fewer CNS side-effects risk, making more tangible the use of PTZs for this alternative therapeutic application.


Assuntos
Antituberculosos/farmacologia , Compostos Organosselênicos/farmacologia , Fenotiazinas/farmacologia , Animais , Antituberculosos/síntese química , Antituberculosos/metabolismo , Antituberculosos/toxicidade , Chlorocebus aethiops , Sinergismo Farmacológico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/toxicidade , Células HEK293 , Humanos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , NADH Desidrogenase/antagonistas & inibidores , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/metabolismo , Compostos Organosselênicos/toxicidade , Testes de Sensibilidade Parasitária , Fenotiazinas/síntese química , Fenotiazinas/metabolismo , Fenotiazinas/toxicidade , Ligação Proteica , Receptores de Dopamina D2/metabolismo , Receptores de Serotonina/metabolismo , Relação Estrutura-Atividade , Células Vero
15.
mSphere ; 5(2)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188750

RESUMO

Globally, more antimicrobials are used in food-producing animals than in humans, and the extensive use of medically important human antimicrobials poses a significant public health threat in the face of rising antimicrobial resistance (AMR). The development of novel ionophores, a class of antimicrobials used exclusively in animals, holds promise as a strategy to replace or reduce essential human antimicrobials in veterinary practice. PBT2 is a zinc ionophore with recently demonstrated antibacterial activity against several Gram-positive pathogens, although the underlying mechanism of action is unknown. Here, we investigated the bactericidal mechanism of PBT2 in the bovine mastitis-causing pathogen, Streptococcus uberis In this work, we show that PBT2 functions as a Zn2+/H+ ionophore, exchanging extracellular zinc for intracellular protons in an electroneutral process that leads to cellular zinc accumulation. Zinc accumulation occurs concomitantly with manganese depletion and the production of reactive oxygen species (ROS). PBT2 inhibits the activity of the manganese-dependent superoxide dismutase, SodA, thereby impairing oxidative stress protection. We propose that PBT2-mediated intracellular zinc toxicity in S. uberis leads to lethality through multiple bactericidal mechanisms: the production of toxic ROS and the impairment of manganese-dependent antioxidant functions. Collectively, these data show that PBT2 represents a new class of antibacterial ionophores capable of targeting bacterial metal ion homeostasis and cellular redox balance. We propose that this novel and multitarget mechanism of PBT2 makes the development of cross-resistance to medically important antimicrobials unlikely.IMPORTANCE More antimicrobials are used in food-producing animals than in humans, and the extensive use of medically important human antimicrobials poses a significant public health threat in the face of rising antimicrobial resistance. Therefore, the elimination of antimicrobial crossover between human and veterinary medicine is of great interest. Unfortunately, the development of new antimicrobials is an expensive high-risk process fraught with difficulties. The repurposing of chemical agents provides a solution to this problem, and while many have not been originally developed as antimicrobials, they have been proven safe in clinical trials. PBT2, a zinc ionophore, is an experimental therapeutic that met safety criteria but failed efficacy checkpoints against both Alzheimer's and Huntington's diseases. It was recently found that PBT2 possessed potent antimicrobial activity, although the mechanism of bacterial cell death is unresolved. In this body of work, we show that PBT2 has multiple mechanisms of antimicrobial action, making the development of PBT2 resistance unlikely.


Assuntos
Antibacterianos/farmacologia , Clioquinol/análogos & derivados , Ionóforos/farmacologia , Streptococcus/efeitos dos fármacos , Zinco/metabolismo , Animais , Bovinos , Clioquinol/farmacologia , Feminino , Mastite Bovina/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/antagonistas & inibidores
16.
PLoS Pathog ; 16(2): e1008287, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32032366

RESUMO

Our inability to predict which mutations could result in antibiotic resistance has made it difficult to rapidly identify the emergence of resistance, identify pre-existing resistant populations, and manage our use of antibiotics to effectively treat patients and prevent or slow the spread of resistance. Here we investigated the potential for resistance against the new antitubercular nitroimidazole prodrugs pretomanid and delamanid to emerge in Mycobacterium tuberculosis, the causative agent of tuberculosis (TB). Deazaflavin-dependent nitroreductase (Ddn) is the only identified enzyme within M. tuberculosis that activates these prodrugs, via an F420H2-dependent reaction. We show that the native menaquinone-reductase activity of Ddn is essential for emergence from hypoxia, which suggests that for resistance to spread and pose a threat to human health, the native activity of Ddn must be at least partially retained. We tested 75 unique mutations, including all known sequence polymorphisms identified among ~15,000 sequenced M. tuberculosis genomes. Several mutations abolished pretomanid and delamanid activation in vitro, without causing complete loss of the native activity. We confirmed that a transmissible M. tuberculosis isolate from the hypervirulent Beijing family already possesses one such mutation and is resistant to pretomanid, before being exposed to the drug. Notably, delamanid was still effective against this strain, which is consistent with structural analysis that indicates delamanid and pretomanid bind to Ddn differently. We suggest that the mutations identified in this work be monitored for informed use of delamanid and pretomanid treatment and to slow the emergence of resistance.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias , Farmacorresistência Bacteriana , Mutação , Mycobacterium tuberculosis , Nitroimidazóis/farmacologia , Nitrorredutases , Oxazóis/farmacologia , Engenharia de Proteínas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Nitrorredutases/genética , Nitrorredutases/metabolismo , Polimorfismo Genético
17.
J Bacteriol ; 202(7)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988080

RESUMO

Exoelectrogens are able to transfer electrons extracellularly, enabling them to respire on insoluble terminal electron acceptors. Extensively studied exoelectrogens, such as Geobacter sulfurreducens and Shewanella oneidensis, are Gram negative. More recently, it has been reported that Gram-positive bacteria, such as Listeria monocytogenes and Enterococcus faecalis, also exhibit the ability to transfer electrons extracellularly, although it is still unclear whether this has a function in respiration or in redox control of the environment, for instance, by reducing ferric iron for iron uptake. In this issue of Journal of Bacteriology, Hederstedt and colleagues report on experiments that directly compare extracellular electron transfer (EET) pathways for ferric iron reduction and respiration and find a clear difference (L. Hederstedt, L. Gorton, and G. Pankratova, J Bacteriol 202:e00725-19, 2020, https://doi.org/10.1128/JB.00725-19), providing further insights and new questions into the function and metabolic pathways of EET in Gram-positive bacteria.


Assuntos
Enterococcus faecalis , Shewanella , Transporte de Elétrons , Elétrons , Geobacter , Homeostase , Nutrientes , Oxirredução
18.
Adv Microb Physiol ; 77: 139-185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34756210

RESUMO

Wherever thermodynamics allows, microbial life has evolved to transform and harness energy. Microbial life thus abounds in the most unexpected places, enabled by profound metabolic diversity. Within this diversity, energy is transformed primarily through variations on a few core mechanisms. Energy is further managed by the physiological processes of cell growth and maintenance that use energy. Some aspects of microbial physiology are streamlined for energetic efficiency while other aspects seem suboptimal or even wasteful. We propose that the energy that a microbe harnesses and devotes to growth and maintenance is a product of three broad tradeoffs: (i) economic, trading enzyme synthesis or operational cost for functional benefit, (ii) environmental, trading optimization for a single environment for adaptability to multiple environments, and (iii) thermodynamic, trading energetic yield for forward metabolic flux. Consideration of these tradeoffs allows one to reconcile features of microbial physiology that seem to opposingly promote either energetic efficiency or waste.

19.
Prog Biophys Mol Biol ; 152: 35-44, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31733221

RESUMO

Cellular bioenergetics is an area showing promise for the development of new antimicrobials, antimalarials and cancer therapy. Enzymes involved in central carbon metabolism and energy generation are essential mediators of bacterial physiology, persistence and pathogenicity, lending themselves natural interest for drug discovery. In particular, succinate and malate are two major focal points in both the central carbon metabolism and the respiratory chain of Mycobacterium tuberculosis. Both serve as direct links between the citric acid cycle and the respiratory chain due to the quinone-linked reactions of succinate dehydrogenase, fumarate reductase and malate:quinone oxidoreductase. Inhibitors against these enzymes therefore hold the promise of disrupting two distinct, but essential, cellular processes at the same time. In this review, we discuss the roles and unique adaptations of these enzymes and critically evaluate the role that future inhibitors of these complexes could play in the bioenergetics target space.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/farmacologia , Succinato Desidrogenase/farmacologia , Tuberculose/tratamento farmacológico , Benzoquinonas/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Descoberta de Drogas , Humanos , Malatos/metabolismo , Oxirredução , Ligação Proteica , Ácido Succínico/metabolismo
20.
Sci Rep ; 9(1): 16759, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727946

RESUMO

The dynamic interaction of the N- and C-terminal domains of mycobacterial F-ATP synthase subunit ε is proposed to contribute to efficient coupling of H+-translocation and ATP synthesis. Here, we investigate crosstalk between both subunit ε domains by introducing chromosomal atpC missense mutations in the C-terminal helix 2 of ε predicted to disrupt inter domain and subunit ε-α crosstalk and therefore coupling. The ε mutant εR105A,R111A,R113A,R115A (ε4A) showed decreased intracellular ATP, slower growth rates and lower molar growth yields on non-fermentable carbon sources. Cellular respiration and metabolism were all accelerated in the mutant strain indicative of dysregulated oxidative phosphorylation. The ε4A mutant exhibited an altered colony morphology and was hypersusceptible to cell wall-acting antimicrobials suggesting defective cell wall biosynthesis. In silico screening identified a novel mycobacterial F-ATP synthase inhibitor disrupting ε's coupling activity demonstrating the potential to advance this regulation as a new area for mycobacterial F-ATP synthase inhibitor development.


Assuntos
Trifosfato de Adenosina/metabolismo , Mutação , Mycobacterium/crescimento & desenvolvimento , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular , Simulação por Computador , Metabolismo Energético , Modelos Moleculares , Mycobacterium/enzimologia , Mycobacterium/genética , Conformação Proteica , Estrutura Secundária de Proteína , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...